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described in § 4. In such hypothetical cases, I FNI will 
be free from errors of observation. However, when 
one uses the observed overall value of an R index 
for finding (Izarl), one must remember that the experi- 
mental errors in I Fobsl would also contribute to the 
overall value of the R index. Owing to this one has 
to note the following two points in estimating (Izarl) 
in actual cases. (a) Since the overall values of Booth- 
type indices for a complete model (i.e. P= N) are 
generally small, they would not be suitable for 
estimating the mean coordinate error of a complete 
model. (b) The (I Arl) value obtained for a model from 
the observed overall values of R indices may be 
somewhat overestimated. 

We thank Sekar and Geetha for providing struc- 
tural data for two of the structures used in the test 
of the theoretical results. One of us (NE) thanks the 
University of Madras for financial assistance. 
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Abstract 

Theoretically expected overall values of ten types of 
normalized R indices are derived for the best centro- 
symmetric model of a non-centrosymmetric crystal 
which is approximately centrosymmetric as a function 
of the mean coordinate error (Izarl) of the best 
centrosymmetric model of the non-centrosymmetric 
crystal. The results obtained were tested in a few cases. 

I. Introduction 

The joint probability density function of the normal- 
ized structure-factor magnitude yN of a non-centro- 
symmetric crystal which is approximately centro- 
symmetric and that (i.e. y~) calculated for the best 
centrosymmetric model (see later for an explanation 
of this nomenclature) has been worked out by 
Swaminathan & Srinivasan (1975) (SS, 1975). They 
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have used this distribution to obtain the local value 
of the normalized Booth-type index sRI(yN) (see 
Table 1 for a definition) as a function of a parameter 
D [see equation (12) for a definiton of D]. A number 
of other R indices which are more efficient in the 
refinement stage are available in the literature [see 
Elango & Parthasarathy (1990) for their definitions 
and notation] and it is worthwhile to obtain the 
theoretical expressions for their overall values for the 
present situation. From a practical point of view, the 
overall value finds more general use than the local 
values of R indices. Further, it is essential to take 
into account the effect of data truncation due to 
unobserved reflections into the theoretical treatment. 
We shall therefore derive the theoretical expressions 
for the overall values of different types of R indices 
and use them to obtain the overall values of R indices 
directly as a function of ([zarl) in the form of a table. 
In this paper we shall follow the notation and nomen- 
clature used by Elango & Parthasarathy (1990). We 
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shall restrict ourselves to the case P = N owing to 
the theoretical complexity of the present situation. 
This does not, however, limit the utility of the results, 
since during the structure completion stage the model Index 

ofa  non-centrosymmetric crystal having a high degree ~dFD 
of centrosymmetry will be generally taken to be 
centrosymmetric until the approximate locations of ~,(y,) 
all atoms in the true structure get determined. It may 
be noted here that the results obtained in this paper ~,(F,I 
represent the minimum probable value of the R 
indices for the best centrosymmetric model (see § 2 ~g',(yi) 
for details). 

2. Derivation of the theoretical expressions for the 
overall values of R indices 

Consider a non-centrosymmetric crystal of space 
group P1 which is approximately centrosymmetric 
containing a sufficiently large number (N, say) of 
similar atoms in the unit cell. If we choose the origin 
to be at the position of the approximate centre of 
symmetry, the position vectors of these N atoms can 
be taken to be r~j+ArNj, --rNj+Ar~j, j =  1 to N/2.  
Following Luzzati (1953), we shall take ArNj and 
Ar~j to be mutually independent random vectors 
obeying a Gaussian distribution law. Suppose that 
we denote a group of P atoms with scattering powers 

~_~ ( j  = 1, 2 , . . . ,  P) at locations r e  symbolically as 
j= ~ (f¢ ,  re ) .  We can then represent the given crystal 

structure symbolically as 

true structure: 

N/2  N / 2  

U (fNj, rNs+Ar~s) + U ( f~s,--rNj+Ar~) • (1) 
j = l  j = t  

In our study, we define the following centrosymmetric 
structure as the model for the true structure defined 
in (1): 

model structure: 

N/2  N /2  

U (fmi, rN,)+ U (fmi,-rmi). (2) 
i = 1  i = 1  

Let us define (IArl) to be 

N/2 
( I a r l ) = ( l / S )  E [Iar~jl+lAr~,~l]. (3) 

j = l  

(IArl) represents the mean coordinate error for the 
centrosymmetric model of the non-centrosymme.tric 
structure. The value of the mean coordinate error for 
any other centrosymmetric model of the given struc- 
ture [see (1)] would always be greater than that of 
the model defined in (2). Hence we shall refer to the 
model defined in (2) as the best centrosymmetric 
model (BCM, hereafter) of the given non-centro- 
symmetric structure. If we confine ourselves to only 
centrosymmetric models of the given non-centro- 
symmetric structure [see (1)], the value of any given 
type of R index may be expected to be lowest for the 

Table 1. Theoretical expressions for the overall values 
of various types of R indices for truncated data 

~{<r,) 

Express ion  Index  Express ion  
c 1 2 2 c 2 t Es£<l y,, - yNIL Lf~(lYN--(YN) I)s R~(#,) 

E,f:(YN>', 2 2 ,  L f  s(YN): 

)].= ( lY. , , , -Y~I) ' :  )]..~ ~' <: " ' ( l Y N - - ( Y N )  I>, li,(z,) 
E, (y,,,)', Y., ~ ' (YN): 

Lf2((YN YN)c 2,)~ 4 2 c ,2,2, - Y.sf:([YN--(YNJ J ~ 
2 2 , B J ~ , ( / , )  

Z~f~(YN): 4 4 , ~.:f s(YN)s 
c 2 i 2 c 2 2 I  

~s((YN--YN) )s E: ([YN--(YN) ] ), 
(YN), E~ 4 , (Ym)s 

( :IY~-<'~)2} ' YN-Y~ ~' ~il(l, ) 2 ~ \ l y e , +  (y~)~, 

Note: Let 4o(yN, y~)  be a function ofyN and y~  and Ik(yN) be a function 
of YN then 

(~( YN, Y~V))', = L~r(l - D2)J tpyN exp I 2(I - D 2) J 

} x to L 1 - D ~ J dyN dye, 

r _y2 ] r D2y21 
× y~ exp L ~ _-z-b-~j/o L ~ _-~-0-~_1 dy 

t 

and 

- '  r vsl (O(Ym)) t, = ~YN exp to L ~ _--z--~j dy 

lYt 

{; 1 r 1. r o:vSl 
× y .  exp L l_--z-~j,o L1 _--z-~j dy.  

Yt 

BCM. Hence the value of the R index pertaining to 
the BCM may be referred to as the minimum probable 
value. In this paper we shall derive the theoretical 
overall values of the different types of R indices 
expected for a BCM of a non-centrosymmetric struc- 
ture which is approximately centrosymmetric. 

It is relevant to note here that the model we are 
dealing with is of the complete type (i.e. P = N and 
consequently tr 2 = 1). For such a model, an unnormal- 
ized R index based on I FI or I and the corresponding 
index based on [Fl/,r, or I / tr  2 become one and the 
same. Thus, for the present case (i.e. P= N),  we 
would have 

/~(F,) = gl(F,), 
~ : ( E )  = ~{(E),  

B/~(I,) = B/~(I,) ,  

B/~(F,) = ,/L(F,), " 

R(t,)=g,(I,), 
R:(I,) = R{(I,). 

(4) 

Hence we need consider only one of the above pairs 
and we shall therefore confine ourselves to the nor- 
malized R indices. Further, it can be shown that 
/~((yt) = Rf(Ft) and/~((z t )  =/~f( l t ) .  Hence we need 
consider only one of the pairs /~((y,), /~{(Ft) and 
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/~{(z,),/~{(L). Thus we need consider only ten types 
of R indices which are given in Table 1. 

The procedure for deriving the theoretical 
expressions of the overall values of R indices for the 
present situation is similar to that used by 
Parthasarathy & Velmurugan (1981). It consists of 
expressing the defining relationships of R indices in 
terms of the normalized variables YN and y~,  dividing 
the reflections into groups based on (sin 0)/A values, 
then summing over reflections in each given range of 
(sin0)/A and then over the various ranges of 
(sin O)/A into which the interval 0 to [(sin O)/)k]max 
has been partitioned. However, since some 
modifications in the procedure are necessary, we shall 
briefly outline the procedure for the index /~(Ft) 
and summarize the final results for the other indices. 

Theoretical expression for R~ ( F~) 
Let IF~rl be the magnitude of the structure factor 

of a reflection H (= hkl) for the given structure and 
let I F~vl be the corresponding calculated value for the 
model. Let yN and y~v be the normalized structure- 
amplitude variables associated with [FNI and IF~vl 
respectively. That is, 

YN=IFNIIo'm Y~=IF~IIo'N, (S) 

where trN is defined as 

~ ,  = <lF~12) = <lF~,12>. (6) 

By definition, 

_ _ F  ~l(F,) T. t l IF~I I~ I Io  , IFNI. (7) 
h k l  ! 

Thus, following the procedure used by Parthasarathy 
& Velmurugan (1981) for obtaining equation (9) from 
equation (1) of their paper, we can show that (7) 
yields 

/~I(F,)=Y. O'Nsns(lYN--YNI): O'Nsn:(yN)'s, (8) 
$ 

where n~ is the number of reflections in the sth range 
of (sin 0)/A. For further simplification of (8), we need 
to consider the properties of the probability density 
functions Pt(yN, y~) and Pt(YN) valid for the present 
situation. If we partition the reciprocal space into 
equi-volume shells, then the different shells into 
which the reciprocal space has been partitioned 
would contain practically the same number of 
observed reflections. Hence we can rewrite (8) as 

RI(F,) = Z  CrNs(lYu-YulL trNs(yN)~. (9) 
$ 

For structures with similar atoms (9) can be rewritten 
a s  

Rl(F,)=X (10) 

Unlike the situation in Parthasarathy & Velmurugan 

(1981), for the present situation (YN)'s depends on 
[(sin 0)/;t] [see (16)] and hence cannot be taken out 
of the summation symbol in the denominator of (10). 
Hence, in order to obtain the overall value /~l(f~), 
we have to evaluate the numerator and the 
denominator in (10) separately. We shall consider 
this aspect presently. 

Expression for (YN) st 

The probability density function (--p.d.f.) of yN is 
known to be (SS, 1975) 

P(YN) = (1 - D4) '/2 exp l 1 ----2--~J I o \ ~ , ] ,  

O-<y <oo, (11) 

where D is defined to be (Luzzati, 1953) 

D = (cos 2~rH. ar).  (12) 

Luzzati (1953) also showed that D can be written as 

D = exp {-  7r3(iAri)Z[(sin 0)/A]2}. (13) 

The p.d.f, of YN for the truncated data yt - YN < oo 
can be obtained from (11) as 

P,(yN)= P(yN)/fl (14) 

where/3 is defined to be 

/3=7 P(yN) dyN. (15) 
Yt 

/3 is a function o f y ,  (IAr]) and (sin 0)/A. For a given 
model (i.e. for a given (IArl)) and for a value of Yt, 
/3 would depend only on (sin 0)/A [see (11) to (15)]. 
Hence, if we confine ourselves to reflections in a 
narrow region of (sin 0)/A, 13 can be taken to be a 
constant (/3s, say). 

Using (14) we can obtain (yN)ts: 

(YN)'s = 7 YNP,(YN) dyN 
Yt 

oo 

= (1//3s) ~ yNP(yN)dyN. (16) 
Yt 

Making use of (11) in (16), we obtain 

(yN): = y~v exp I0 ]1 _ - -S~]  dyN 

Yt 

I; 1 - x y,,, exp ,:,.,,,,, 

Yt 

(17) 

where we have cancelled out the common factors 
from the denominator and numerator. Equation (17) 
is to be evaluated numerically for any given value of 
the parameter D. 
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Expression for ([YN-Y~I)', 

The joint p.d.f, of YN and y~v is known to be (SS, 
1975) 

P(yN, y~) = 1 - 0 2 

x exp L 2(1 - D 2) J 

x I r 2Dy,,,y~] 
°L J' 

O<--yN, y~<oO. (18) 

The joint p.d.f, of YN and Y~v valid for the truncated 
data y, _< YN < ~ can be obtained from (18) as 

P,(YN, Y~)=(1/f l)P(yN, y~), 
(19) 

yt <-- yN < ~,  0--<y~v<~, 

where /3 is defined in (15) and P(YN, Y~) in (18). 
The expectation value o f [ y N -  Y~v[ for the truncated 
data corresponding to a narrow range of (sin 0)/)t 
will therefore be given by 

(I YN -'Y%l)', 
o o o o  

= [. ~ lYN--Y~IP,(YN, Y~) dyN dy~ 
0 Yt 

=(1//3,) ~ ] y N - - y ~ l P ( y N ,  y~ )dyNdy~ .  (20) 
0 Yt 

Making use of (15) and (18) in (20), we obtain 

(lYN -Y~I)'~ 

- ~ i 2 ~ - r ) J  0 lYN--Y~IYN 
Yt 

× 
exp /  2 ( 1 - O  2 ) / 

[2DyNy~v] ] 
x ~r01_ 1 -  0 2 3 dy,,, dy~ 

x { f  yNexp[-y~/(1-D4)]y, 

XIo[D2y~/(1-D4)]dyN , (21) 

where we have cancelled out the common factors 
from the denominator and numerator. Equation (21) 
is to be evaluated numerically. 

The above considerations can be extended to the 
other types of R indices. The final expressions 

obtained for the overall values of the various R 
indices are therefore listed in Table 1 without details 
of derivation. 

3. Method of obtaining overall value/~ as a function 
of <lArl) 

The theoretical overall value of any R index for a 
given (IArl) and y, may be computed by the following 
procedure: (i) Partition the reciprocal space into 1, 
equi-volume shells. (ii) Calculate the mean values of 
(sin 0)/A for these shells (gi, i = 1, 2 , . . . ,  ~,, say). (iii) 
Compute the values of D corresponding to the various 
shells by using the values of si, i=  1 to ~, [see (13)]. 
Let these values of D be denoted by Di, i = 1 to 1,. 
(iv) Make use of the values of D thus computed to 
calculate the local values corresponding to the 
different shells of the numerator and denominator 
quantities in the expression for /~. This involves 
numerical integration of the appropriate integrals 
shown at the bottom of Table 1. (v) Using the local 
values obtained in step (iv) calculate the overall 
values of the numerator and denominator quantities 
in the expression for/~. (vi) Make use of the overall 
values obtained in step (v) to obtain the overall value 
of the R index using the appropriate expression in 
Table 1. The theoretical overall values of the various 
R indices thus obtained are given as a function of 
(l~arl) in Table 2 for y, = 0.0, 0.15, 0.30, 0.45 and 0.60. 
It may be noted that the partititioning of the 
reciprocal space into 1, equi-volume shells and the 
evaluation of gi, i = 1 to 9, can be carded out by the 
procedure outlined by Elango & Parthasarathy 
(1990). The scattering factor needed as weights in the 
expressions for R is taken to be the same as that in 
the previous paper (Elango & Parthasarathy, 1990). 

4. Test of the theoretical results 

The theoretical results obtained in Table 2 were tested 
in a few cases. Two centrosymmetric structures (called 
S1 and $2) belonging to space group P1 were taken 
to construct three different hypothetical non- 
centrosymmetric structures which are approximately 
centrosymmetric as follows: The structure of the 
dimethyl ester of meso-tartaric acid (Kroon & Kan- 
ters, 1973) (referred to as structure S1) was taken 
and random positional errors (following a Gaussian 
distribution) were introduced independently on the 
(x, y, z) coordinates of all 24 atoms in the unit cell. 
This resulted in a non-centrosymmetric structure 
which is approximately centrosymmetric with 24 
atoms in the asymmetric unit (the space group being 
P1 after the introduction of coordinate errors). Three 
independent sets of errors with ([Ar[)=0.064, 0.162 
and 0.227 A were thus introduced to the centrosym- 
metric structure S1 resulting in three different non- 
centrosymmetric structures (A1, A2 and A3, say) 
which are approximately centrosymmetric. Thus the 
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Table 3. Test of the theoretical results for the best centrosymmetric models 

(A1, S1) (A2, S1) (A3, $1) (B1, $2) (B2, $2) (B3, $2) 

R index /~ (larl) aft (larl) /~ (larl) g (lar[> ~ (larl> g (IArl) 
l~t (Ft) 9.0 0.061 26.6 0.179 34.7 0.246 5.9 0.041 12.6 0-084 21.6 0-143 
/~l(Yt) 10.4 0.061 30.0 0.175 39.3 0-245 6.8 0.041 14.2 0.081 24.2 0.138 
-~t (It) 11.4 0.066 34.0 0.187 44.7 0.249 6.4 0.036 13.0 0.074 23.5 0.130 
R~(z,) 15.9 0.062 46.7 0.180 65.3 0.262 9.1 0.040 18.7 0.071 33.8 0.129 

B/~I(Ft) 0"9 0"067 7"3 0"190 12"1 0'253 0"3 0"040 1-4 0"083 4.1 0"140 
B/~l(yt) 1"6 0"063 11"9 0.178 20"8 0"250 0"5 0"036 2"3 0"075 6"7 0"131 
BR~(It) 0"6 0.064 5"4 0"177 8-4 0"225 0-2 0-040 0"7 0"068 2-1 0"113 
8Rl(zt) 3"2 0"066 24"8 0"191 53"8 0"283 0-6 0"031 2"7 0"061 10"1 0"124 
Rf(F,) 15.2 0.060 43.0 0.185 52.1 0.256 11.1 0.045 25.0 0.095 39-6 0.164 
Rf(It) 28"5 0"059 70"9 0"181 83"7 0"250 21-4 0"045 44.2 0-094 65-7 0"160 

(I Arl)es t 0"063 0"182 0"252 0"039 0"079 0"137 

<larl) . . . .  0.064 0.162 0.227 0.041 0.079 0.131 

Note: R is in % and ([Ar[) is in A,. ([Arl)e~t is the average value in the respective columns. 

centrosymmetric structure S1 would be the BCM for 
all these three non-centrosymmetric structures A1, 
A2 and A3. In each case the structure factor calcu- 
lated using the known coordinates (of A1, A2 or A3) 
were taken to correspond to FN. The structure factors 
calculated using the known coordinates of structure 
S1 were taken to correspond to F~v. The overall 
values of various R indices for the three cases, namely 
(i) (A1, S1), (ii) (A2, S1) and (iii) (A3, S1), were 
computed omitting reflections for which yN <0.3 
(=Yt) and these are given in columns 2, 4 and 6 of 
Table 3. The theoretically expected values of (IArl) 
were then estimated from the respective R values by 
interpolation using the results in Table 2 and the 
results thus obtained are given in columns 3, 5 and 
7 respectively of Table 3. The average of the (IArl) 
values thus obtained from the 'observed' overall 
values of the R indices are given in the row marked 
(I A rl)est under the respective columns. The true values 
of(IArl) for the three cases, namely (A1, S1), (A2, S1) 
and (A3, S1), are given in the last row marked 
(larl>t~o. A similar procedure was used in the case 

of the centrosymmetric structure of Hanson & Rohrl 
(1972) (referred to as structure $2) and three non- 
centrosymmetric structures (called B1, B2 and B3) 
with ([Ar])=0.041, 0.079 and 0.131/~, respectively, 
were generated. The relevant final results obtained 
for the three cases, namely (B1, $2), (B2, $2) and 
(B3, $2), are also summarized in Table 3. It is seen 
from Table 3 that there is reasonably good agreement 
between the corresponding values of ([Ar[)est and 
([Ar[)true in all cases. 

One of the authors (NE) thanks the University of 
Madras for financial assistance. 
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Abstract 

A formula is developed which gives the histogram of 
electron density values for polypeptide structures. 
The six parameters of the formula have been evalu- 
ated and are given for a range of resolutions from 
4.5 to 0.9 ~ .  The formula may be used in density 
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modification techniques of map improvement for 
small proteins. 

Introduction 

Some recent papers (Zhang & Main, 1990a, b; Main, 
1990) have described a method of determination and 
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